GMI Components: Import/Export Variables

Jules Kouatchou

May 12, 2006

Issues Raised at the Meeting

- Include the dimensions of variables

Done

- Include the units of vraiables

Done whenever available

- GMAO will provide "press3e" (atmospheric pressure at the edge of each grid box) only and not "press3c", "ai", "bi", "am", "bm" and "pt". These quantities will have to be derived by GMI.

Though "ai", "bi", "am", "bm" and "pt" may be read in from a MetFields file, there is a GMI routine that sets their values (that remain constant throughout the code). We can then easily derive "press3c". As a matter of fact, we do not even need "press3e". We only need the surface pressure.

- The array "cmi_flags" use for lightning parametrization could be removed for now as IMPORT variable. It is resolution and MetFields dependent.
- Do the variables "con_precip" and "tot_precip" include rainfall or snow?

Do not know!

- How are "max_cloud" and "ran_cloud" used?

Inside the Dry Deposition, Emission operators, they are used to compute the fractional cloud cover (local variable):

Inside Gas Phase Chemistry, they are used to derived "tau_cloud" (DAO MetFields only).

Inside the photolysis package, they are use to compute the fractional cloud cover.

Inside the AerosolDust module, they are used to compute the optical depth of aerosol/dust species.

- Reduce the dimensions of the emission array, "emiss(:,:,:,:)" and the species concentartion array, "const(:,:,:,:)".

A possible solution has been proposed by Tom.

- Check the units of "mcor" and "mass" and they need to be IMPORT variables.

"mcor" and "mass" can internally be derived in the GMI code. The GMI unit for "mass" is [kg] but GMAO wants [kg/m2]. Do not know how to address the issue.

- Why are "emiss_isop", "emiss_monot" and "emiss_nox" considered EXPORT variables for the Emission component?

The three variables are computed by the Emission component and passed to the Chemistry component where they are used.

- Is it enough to provide "precipitation" only instead of the variables "rain", "rain_zm", "rain_hk" and "rain_ls"?

They are mainly employed in the wet deposition package.

- What are the arays "s_radius", "s_velocity" and "diffaer"?

The are updated by the module computing the gravitational settling of aerosols and passed to the Dry Deposition operator. We may ignore them for this work (till we have a coupled aerosol/combo mechanism).

- What is the array "tropp" and its unit?

There is a routine in GMI that computes its value using the temperature and the atmospheric pressure (at the center of the grid box). The unit of this variable is [mb].

- How are the files read by the Emission and Chemistry components?

Most of the files are read by each worker processor. A couple of them are read by the master processor (see below).

We list here the variables GMI will need from GEOS5 and the ones GMI will pass to GEOS5.

IMPORT Variables

```
(:,:,:) Atmospheric pressure at the center of each grid box [mb
press3c
                                                                               ٦
             (:,:,:) Atmospheric pressure at the edge of each grid box
press3e
                                                                               1
                                                                         [Pa/s ]
             (:,:,:) Z-M convective mass flux in
                                                    updraft
zmmu
cmi_flags
             (:,:)
                     Array of flags that indicate continental, marine, or ice
                     Only used for lightning parameterization.
lwi_flags
             (:,:)
                     Array of flags that indicate land, water, or ice
             (:,:,:) Detrainment rate
dtrn
             (:,:)
                     Net downward shortwave radiation at ground
                                                                         [W/m^2]
radswg
surf_air_temp(:,:)
                     Surface air temperature
                                                                         [degK ]
surf_rough
           (:,:)
                     Surface roughness
                                                                         [m
con_precip (:,:)
                                                                         [mm/day]
                     Convective precipitation
tot_precip (:,:)
                     Total precipitation
                                                                         [mm/day]
             (:,:)
                                                                         [m/s]
ustar
                     friction velocity
max_cloud
            (:,:,:) Maximum overlap cloud fraction for LW
ran_cloud
            (:,:,:) Random overlap cloud fraction for LW
            (:,:,:) Temperature
kel
                                                                         [degK ]
             (:,:)
pbl
                     Boundary layer height
                                                                         [m
                                                                               ]
            (:,:,:) Specific humidity
                                                                         [g/kg ]
humidity
             (:,:)
pctm1
                     Surface pressure at t1
                                                                         Гmъ
                                                                               1
         (:,:,:,:) Array of emissions
                                                                         [kg/s ]
emiss
           (:,:,:) Species concentration, known at zone centers [mixing ratio]
const
pt
                     pressure = (am * pt) + (bm * psx)
                                                                               ]
                     Pressure = (ai * pt) + (bi * psx), ai at zone interface
             (:)
ai
             (:)
                     Pressure = (ai * pt) + (bi * psx), bi at zone interface
bi
            (:)
                     Latitude
                                                                         [deg
                                                                               ]
latdeg
             (:)
                     Longitude
                                                                         [deg
                                                                               ]
londeg
                                                                         [m^2
mcor
             (:,:)
                     Area of grid box
                                                                               ]
             (:,:,:) Total mass of the atmosphere within each grid box
                                                                               ]
mass
                                                                         [kg
EXPORT Variables
_____
flashrate
                     Flash rate (flashes per 4x5 box per s)
            (:,:)
lightning_no (:,:,:) 3d array of pnox production in kg./sec
emiss_isop (:,:)
                                                                         [kg/s ]
                     Isoprene
                                 emissions
emiss_monot (:,:)
                     Monoterpene emissions
                                                                         [kg/s ]
                     NOx
emiss_nox
            (:,:)
                                 emissions
                                                                         [kg/s ]
        (:,:,:,:) Array of emissions
                                                                         [kg/s ]
emiss
           (:,:,:) Species concentration, known at zone centers [mixing ratio]
const
```

LIET DEDOCITION Component

WET DEPOSITION Component

IMPORT Variables

```
press3c (:,:,:) Atmospheric pressure at the center of each grid box [mb ] press3e (:,:,:) Atmospheric pressure at the edge of each grid box [mb ]
```

```
(:,:,:) Temperature
                                                                     [degK ]
kel
            (:,:,:) rainfall across cell edges
                                                                     [mm/day]
rain
            (:,:,:) rain production due to deep conv processes
rain_zm
                                                                  [kg/kg/sec]
            (:,:,:) rain production due to shal conv processes
rain_hk
                                                                  [kg/kg/sec]
            (:,:,:) rain production due to lasrge-scale processes
                                                                  [kg/kg/sec]
rain_ls
            (:)
                    cosine of latitude of zone centers = cos(dlatr)
coscen
grid_height (:,:,:) height of each grid box
                                                                     Гm
                                                                            1
                                                                     [kg
            (:,:,:) total mass of the atmosphere within each grid box
mass
                                                                           ]
wet_depos
            (:,:,:) wet deposition accumulated since last output
                                                                     [kg/m^2]
            (:,:)
                    Area of grid box
                                                                     [m^2
                                                                           ٦
mcor
                    Convective precipitation
                                                                     [mm/day]
con_precip
          (:,:)
            (:,:)
                    Total precipitation
                                                                     [mm/day]
tot_precip
          (:,:,:) Species concentration, known at zone centers
                                                               [mixing ratio]
EXPORT Variables
            (:,:,:) wet deposition accumulated since last output
                                                                     [kg/m^2]
wet_depos
          (:,:,:) Species concentration, known at zone centers
                                                               [mixing ratio]
moistq
           (:,:,:) moisture changes due to wet processes
                                                                   [g/kg/day]
_____
                       DRY DEPOSITION Component
______
IMPORT Variables
_____
                    pressure = (am * pt) + (bm * psx)
                                                                            ]
pt
                    Pressure = (ai * pt) + (bi * psx), ai at zone interface
ai
            (:)
            (:)
                    Pressure = (ai * pt) + (bi * psx), bi at zone interface
            (:)
                    pressure = (am * pt) + (bm * psf), am at zone midpoint
am
            (:)
                    pressure = (am * pt) + (bm * psf), bm at zone midpoint
bm
            (:)
                    Latitude
                                                                            ]
latdeg
                                                                     [deg
            (:)
                    Longitude
                                                                     [deg
                                                                            ]
londeg
mcor
            (:,:)
                    Area of grid box
                                                                     [m^2
                                                                            ]
            (:,:,:) Total mass of the atmosphere within each grid box
                                                                            ]
mass
                                                                     [kg
lwi_flags
            (:,:)
                    array of flags that indicate land, water, or ice
            (:,:,:) specific humidity
himudity
                                                                     [g/kg ]
max_cloud
            (:,:,:) Maximum overlap cloud fraction for LW
ran_cloud
            (:,:,:) random overlap cloud fraction for LW
                    net downward shortwave radiation at ground
            (:,:)
                                                                     [W/m^2]
radswg
surf_air_temp(:,:)
                    surface air temperature
                                                                     [degK ]
surf_rough (:,:) surface roughness
                                                                     Γm
                                                                            1
            (:,:)
                    friction velocity
                                                                     [m/s
ustar
psf
            (:,:)
                    surface pressure field at t1, known at zone centers [mb
                                                                            ]
kel
            (:,:,:) temperature
                                                                     [degK ]
s_radius
            (:,:,:) aerosol radius at bottom layer
                                                                     [m
                                                                            ]
            (:,:,:) aerosol settling velocity at bottom layer
s_velocity
                                                                     [m/s
                                                                            ]
diffaer
            (:,:,:) aerosol diffusivity at bottom layer
                                                                     [m^2/s]
            (:,:,:) dry deposition accumulated since last output
                                                                     [kg/m^2]
dry_depos
```

(:,:,:) Species concentration, known at zone centers [mixing ratio]

EXPORT Variables

const

```
(:,:,:) dry deposition accumulated since last output
                                                                 [kg/m^2]
const
         (:,:,:) Species concentration, known at zone centers [mixing ratio]
______
                     SIMPLE DEPOSITION Component
______
IMPORT Variables
_____
           (:,:,:) atmospheric pressure at the center of each grid box [mb
press3c
         (:,:,:) Species concentration, known at zone centers [mixing ratio]
const
EXPORT Variables
         (:,:,:) Species concentration, known at zone centers [mixing ratio]
                     CHEMISTRY Component
______
IMPORT Variables
_____
                  pressure = (am * pt) + (bm * psx)
                                                                  Гтъ
                                                                      ٦
pt
          (:)
                 Pressure = (ai * pt) + (bi * psx), ai at zone interface
ai
           (:)
                  Pressure = (ai * pt) + (bi * psx), bi at zone interface
bi
          (:)
                 pressure = (am * pt) + (bm * psf), am at zone midpoint
am
          (:)
                  pressure = (am * pt) + (bm * psf), bm at zone midpoint
bm
latdeg
         (:)
                  Latitude
                                                                 [deg
                                                                       ]
          (:)
                  Longitude
                                                                       ]
londeg
                                                                 [deg
           (:)
                   latitude of zone center in latitude direction
                                                                       ]
dlatr
                                                                 [rad
                                                                 [m^2
                                                                       ]
          (:,:)
                   Area of grid box
mcor
           (:,:,:) Total mass of the atmosphere within each grid box
                                                                 [kg
                                                                       ]
mass
grid_height
                   height of each grid box
                                                                 [m
                                                                       ]
press3c
           (:,:,:) Atmospheric pressure at the center of each grid box [mb
                                                                       ]
           (:,:,:) Atmospheric pressure at the edge of each grid box
                                                                 Гmъ
                                                                       1
press3e
           (:,:)
                   tropopause pressure
                                                                 [mb
                                                                       ]
tropp
          (:,:,:) Maximum overlap cloud fraction for LW
max_cloud
ran_cloud
           (:,:,:) Random overlap cloud fraction for LW
           (:,:,:) optical depth (dimensionless)
tau_cloud
           (:,:,:) Temperature
                                                                 [degK ]
kel
          (:,:,:) Specific humidity
humidity
                                                                 [g/kg ]
           (:,:)
                   Surface pressure at t1+tdt
pctm2
                                                                 [mb
surf_alb_uv (:,:)
                   bulk surface albedo (fraction 0-1)
           (:,:,:) convective mass flux
                                                               [kg/m^2*s]
emiss_isop (:,:)
                   Isoprene
                             emissions
                                                                 [kg/s ]
emiss_monot (:,:)
                                                                 [kg/s ]
                   Monoterpene emissions
                                                                 [kg/s ]
emiss_nox
           (:,:)
                   NOx
                             emissions
       (:,:,:,:,:) Array of emissions
                                                                 [kg/s ]
emiss
         (:,:,:) Species concentration, known at zone centers [mixing ratio]
const
EXPORT Variables
```

```
const (:,:,:) Species concentration, known at zone centers [mixing ratio] emiss (:,:,:,:) Array of emissions [kg/s]
```

INPUT FILES NAMES

Emission

emiss_infile_name : emission input file name

read by all the worker processors

light_infile_name : lightning input file name

read by all the worker processors

precip_infile_name : precipitation input file name

read by all the worker processors

soil_infile_name : soil type input file name

read by all the worker processors

read by all the worker processors

monotconv_infile_name : monoterpene convert input file name

read by all the worker processors

read by all the worker processors

lai_infile_name : leaf area index input file name

read by all the worker processors

gcr_infile_name : Galactic Cosmic Ray input file name

read by all the worker processors

read by all the worker processors

Chemistry

read by master processor

h2oclim_infile_name : water climatology input file name

read by all the worker processors

read by all the worker processors

uvalbedo_infile_name : uv albedo input file name

read by master processor

cross_section_file : X-Section quantum yield input file name

read by all the worker processors

rate_file : Master rate input file name

read by all the worker processors

T_O3_climatology_file : T & O3 climatology input file name

read by all the worker processors

s_radius, s_velocity and diffaer

s_radius, s_velocity and diffaer are updated inside the routine computing the gravitational settling of aerosols, Update_Grav_Settling. Update_Grav_Settling is called only if the logical variable "do_grav_set" is set to true.

How some Variables are Used in the GMI Code

mcor, pt, ai, bi, am, bm

EMISSION Component

"mcor" is employed to

- update the array "emiss_nox" (unit issue?)
- update diagnostics variables

"humidity, ai, bi, pt" are only used to compute the grid box height inside Add_Emiss_Llnl. They can be removed from the argument list of the emission control routine and be replaced by "grid_height".

CHEMISTRY Component

"mcor" is utilized

- to calculate column ozone in the lookup table module (unit issue?)
- for surface emission diagnostics.

"mcor, ai, bi" are used to calculate conversion to go from kg/box/s to $mole/cm^3/s$.

"humidity, ai, bi, pt" are only used to compute the grid box height inside Update_Semiss_Inchem. They can be removed from the argument list of this routine and be replaced by "grid_height".

The same can be said for the argument list of

- Update_QuadChem
- Update_Smv2chem

"ai, bi, pt" are employed to compute tau_cloud for DAO Met Fields.

"ai, bi, am, bm, pt" are used in the photolysis package to calculate pressure at boundaries of CTM levels:

```
Press(:) = ai(:)*pt + bi(:)*SurfPressure
```

Press(:) = am(:)*pt + bm(:)*SurfPressure

DEPOSITION Component

"mcor" is utilized to

- update dry_depos and wet_depos (unit issue?)
- update moistq and precip_bot (unit issue?)

"humidity, ai, bi, pt" are only used to compute the grid box height inside Update_Drydep. They can be removed from the argument list of this routine and be replaced by "grid_height".

"humidity, am, bm, pt" are also used there to compute something similar to the grid box height.

CONVECTION Component

"mcor" is utilized to

- compute the internal number of time step for convection
- update the wet_depos array (unit issue?)

"ai, bi, pt" only employed in Do_Convec_Dao2.

ADVECTION Component

"mcor, ai, bi, pt" are used the total mass for internal diagnostics. The variable "mass" can passed in the argument list of the advection control routine and replace them.